首页> 外文OA文献 >Phase-locking between Kuramoto oscillators: robustness to time-varying natural frequencies
【2h】

Phase-locking between Kuramoto oscillators: robustness to time-varying natural frequencies

机译:仓本振荡器之间的锁相:对时变固有频率的鲁棒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we analyze the robustness of phase-locking in the Kuramoto system with arbitrary bidirectional interconnection topology. We show that the effects of time-varying natural frequencies encompass the heterogeneity in the ensemble of oscillators, the presence of exogenous disturbances, and the influence of unmodeled dynamics. The analysis, based on a Lyapunov function for the incremental dynamics of the system, provides a general methodology to build explicit bounds on the region of attraction, on the size of admissible inputs, and on the input-to-state gains. As an illustrative application of this method, we show that, in the particular case of the all-to-all coupling, the synchronized state exponentially input-to-state stable provided that all the initial phase differences lie in the same half circle. The approach provides an explicit bound on the convergence rate, thus extending recent results on the exponential synchronization of the finite Kuramoto model. Furthermore, the proposed Lyapunov function for the incremental dynamics allows for a new characterization of the robust asymptotically stable phase-locked states of the unperturbed dynamics in terms of its isolated local minima.
机译:在本文中,我们分析了具有任意双向互连拓扑的仓本系统中锁相的鲁棒性。我们表明,时变自然频率的影响包括振荡器集合中的异质性,外源性干扰的存在以及未建模动力学的影响。该分析基于Lyapunov函数的系统增量动力学,提供了一种通用方法,可在吸引区域,可允许输入的大小以及输入到状态的增益上建立明确的界限。作为此方法的一个示例性应用,我们表明,在所有耦合的特定情况下,如果所有初始相位差都在同一半圆内,则同步状态以指数形式输入到状态稳定。该方法为收敛速度提供了明确的界限,从而扩展了有关有限仓本模型的指数同步的最新结果。此外,所提出的用于增量动力学的Lyapunov函数允许根据其孤立的局部最小值对无扰动动力学的鲁棒渐近稳定锁相态进行新的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号